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Comment on “Brownian motion of two interacting particles
under a square-well potential”

V. Berdichevsky and M. Gitterman
Department of Physics, Bar-Ilan University, Ramat Gan 52900, Israel
(Received 1 May 1995)

We present the exact solution of the Fokker-Planck equation for a particle escaping from the
square-well potential under the influence of white noise. The mean-square displacement obeys the
Einstein relation, in contrast to the conclusion of the recent article by Akio Morita [Phys. Rev. E

49, 3697 (1994)).

PACS number(s): 05.40.+j

Diffusion over potential barriers is an old problem of
great importance in physics, the simplest model for such
a problem being the escape of a particle from a square
well of depth Vj, and width u (Fig. 1) under the influence
of white noise. The Fokker-Planck equation for the prob-
ability distribution function p(z,t) for the position z of
a particle at time ¢ reads [2]

Orp = 03[0.p + Ad(z — u)p). (1)

Here A = V,/T, where the temperature 7' is measured
in units of energy and the time is measured in units of
length squared (the diffusion coefficient is chosen equal
" to unity). The initial condition is assumed to be a §
function,

p(z,t =0) = é(x — xo). (2)

The wall at z = 0 was taken as a reflective boundary, i.e.,
the boundary condition at x = 0, along with finiteness of

V(x)

FIG. 1. Square-well potential V(z).
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patzxz — oo,is
O.p=0atz =0, pis finite at z — oco. (3)

A quite sophisticated analysis of (1)—(3) was performed
in Ref. [1] which includes, in particular, the different
asymptotic forms of the confluent hypergeometric func-
tions, leading to a very strange result for the asymptotic
expansion of the mean-square displacement (z2). Indeed,
it was found [1] that the Einstein relation does not hold
(2 % 2t at t — o0o) and the diffusion is anomalous
(z? ~ t™ with n > 1). A similar result was obtained in
Ref. [1] for the escape from a three-dimensional spheri-
cally symmetric potential well. However, we believe the
analysis in Ref. [1] is flawed because of the incorrect use
of the Laplace transform of Eq. (1); namely, the author
of Ref. [1] ignored the existense of the branch point in
inverting the Laplace transform. We present here the ex-
act solution of (1)—(3), first for the simple case zo = u,
ie., p(z,t = 0) = §(x — u) (initially a particle is located
at the right end of the barrier), and then for the general
case (2). It is self-evident that the asymptotic results will
not depend on the precise initial position of the particle
inside a well. In contrast to Ref. [1], we solve Eq. (1) in
two regions, 0 < z < w and v < ¢ < 0o, and then match
the solutions obtained at £ = u. In each of these regions,
Eq. (1) does not contain a ¢ function. Let us perform the
Laplace transform, p(s) = [° p(t)e™**dt:

82p = sp— p(x,0) = sp — 6(x — u), (4)
where the initial condition p(z,t = 0) = é(z — u) has
been used. The solutions of Eq. (4) in the two regions of
interest are

p1 = Cicosh(v/sz) , 0 < z < u,
p2=Corexp V*®  u <z < c0. (5)
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The boundary conditions (3) were used to obtain (5).
Turning now to the matching conditions at £ = u, one
has to take into account the jump of p(x,t) at this point,
namely (2], p(u+ €,t)e? = p(u —¢,t), and the continuity
of the current. The latter is assured by integrating (4)
over the z region (u — €, u + €) with an infinitesimal e.
This procedure gives

— Opprlemue = 1. (6)
The two matching conditions for p and 9,p at x = u lead
to the following values for the constants C; and Cs :
1
V/s[sinh(y/su) + e~ 4 cosh(/su)] ;
eV*u~4 cosh(y/su) 0
\/s[sinh(y/su) + e~4 cosh(y/su)]’

az,ﬁ2|w:u+e

Cy =

Cy =

COMMENTS 53

Equations (5) and (7) yield a complete solution of the
time-dependent problem (1) in the Laplace-transformed
form. For a comparision with Ref. [1], we restrict our-

selves to the calculations performed in Ref. [1]. The
Laplace transform of {z2) becomes
2 u?
2\y
L{Ue)} = 5+
4 2u+/5 cosh(y/su)(1 — e?) (8)
s2[e4 sinh(y/su) + cosh(+/su)]’

Expanding the hyperbolic functions in (8) in terms of
negative exponentials and then in a series by the binomial
theorem, one can perform the Laplace transform exactly

[3]:

et G () e () e ()

—+vmu(n + 1)erfc (M

S

For A =0, (9) reduces to the well-known field-free result
(z%) = 2t+u?. Using the asymptotic expansion of erfc(z)
for small z, erfc(z) = 1 — 2z/4/m, leads to the following
asymptotic expansion for £ — oo:

()i 00 = u? — 2eu? 4+ 2(e?)?u? 4 2t

()

If one considers the general initial condition (2), the
result (10) remains unchanged except that one has to re-
place u? in the first term of the right-hand side of (10)
by zZ. In addition to (z2), we also calculated the time-
dependent probability P(t) to remain inside the well.
The solution (5) and (7) yields for the Laplace transform

of P(t)
Au /31 (:8, S)dm

_ sinh(/su) (1)

s[sinh(y/su) + e~4 cosh(y/5u)]’

(10)

L{P(t)}

) — \/mun erfc (P—TD } (9)

The inverse Laplace transform of (11) is then

Po= 5 3 (55) = (%)

n=0

e (M1

which has the following asymptotic form for ¢ — oo:

I
>

€
P(t)]im00 &

(13)

3

The same limiting form is obtained for the initial condi-
tion (2). Finally, in contrast to Ref. [1], we have found
that the Einstein relation does hold for a particle escap-
ing from the potential well shown in Fig. 1, as one would
expect for obvious physical reasons.
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